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Abstract—Non-intrusive load monitoring (NILM) is a research
field focused on developing algorithms that can accurately track
constituent electrical loads in a system using only the aggregate
signal alone (i.e., smart meter). It is widely understood that
having a clean signal free of noise and transient behaviour,
whether for event-based or state-based methods, can lead to
more accurate solutions that will eventually solve the NILM
problem. We propose a fast and highly reliable method for
producing a block-like representation of signals. Using the same
data and disaggregation technique, we compare our algorithm
with a recent similar effort and show significant improvements
in accuracy (98% vs. 94% tracked energy over three appliances)
and run-time (143ms vs. 891s). Application of our method to raw
mains power data shows it can generalize to more complex cases.

Index Terms—unsupervised learning, disaggregation, non-
intrusive load monitoring, NILM, universal NILM, UNILM,
adaptive filter, smart meter, smart grid

I. INTRODUCTION

Non-intrusive load monitoring (NILM) [1] infers or tracks
constituent electrical loads by only using the aggregate power
signal (i.e., smart meter) — often referred to as disaggregation.
Disaggregation of constituent loads in a system is a difficult
and complex problem, owing to the fact that electrical loads
in a home often significantly overlap in time or are even
concurrent with one another [2]. Many statistical models and
algorithms have been developed to solve this problem, and sig-
nificant results have been achieved in the supervised-learning
context, where algorithms are fed labelled data from individual
loads in order to learn characterizing features. Data can be
taken from different publicly available datasets [3] to learn
these features. However, generalization from these learned
models to new homes with different appliances has proven
difficult [4]. Unsupervised techniques have consequently come
to the forefront of research in NILM, where only aggregate
data can be used, forcing the development of algorithms able
to learn immediately upon installation in a new home.

Regardless of method, it is often the case that noise and
short-lived appliance behaviour are prohibitive to the success
of NILM algorithms. The intent of this paper is illustrated by
what we consider to be the contributions of our work to the
NILM field:
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A. Research Contributions

The present work provides the several contributions to the
NILM field:

1) We demonstrate an algorithm (or filter) capable of pro-
ducing a clean, block-like representation of aggregate
data using a conceptually simple event-detection method.

2) We show significant improvements in run-time and accu-
racy relative to a recently published effort [5].

3) We demonstrate the generalization of this method to real
use cases in complex aggregate examples.

II. BACKGROUND

Several disaggregation methods in NILM — both supervised
and unsupervised — either require or benefit from a clean
aggregate and/or sub-metered data with well-defined power
consumption levels separated by ‘on’ or ‘off’ events. In other
words, a block-like representation of the data, with a single
power level representing each combination of appliance states
in the home. Super-state hidden Markov models (SSHMMs)
introduced in [6] are one example of a method benefiting
from such a representation. In these models, all possible
combinations of appliance states are enumerated (called super-
states) and using the training data, probabilities are associated
with the emission of a particular power draw by a given super-
state, and also with the likelihood of transition from one super-
state to another. Because the number of super-states increases
rapidly with the number of loads in the house, the Gaussian
distributions on emission and transition built from the training
data become congested, and the confidence with which the
model can ascribe a given power draw to a single super-
state often decays quickly. Noise in the training data or the
raw aggregate can very easily cause a misclassification during
disaggregation. If instead a block-like representation of the
data was passed to a SSHMM, the transition and emission
distributions would be much more localized, allowing the
model to tolerate a higher number of loads.

Another example of the benefit of a block-like represen-
tation is the event-based disaggregation method introduced
by Dong and collaborators in 2013 [7]. In their work, they
suggested modelling appliances as finite-impulse response
(FIR) filters, whose response to piece-wise constant inputs
(i.e. on/off inputs to the filter modelling each appliance) could



reconstruct the observed signals in the aggregate. Following
the notation laid out in their work, for training a given load
i, we know in the training data the on/off state u?[t] = {0,1}
of the load for any time ¢, as well as the resulting power
draw, z;[t]. In a standard channel estimation context, the n;
weights needed for modeling the response are determined
by least-squares optimization and stored in a vector 3; =

[bi1 bia ... bin,]". In other words, the training set of each
load can be recreated by
viltl = > Bl uilt — ]+ eilt], (1)
j=1

where e;[t] is a noise/error term. During testing, the aggregate
is known and recovering the power consumption of each load
is needed:
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And so the disaggregation problem can be stated as finding
the wu;[t] at each ¢ for each of the i = 1 : D loads given
only the aggregate sum, y[t]; no doubt a difficult problem.
They attempted to solve this problem by arranging the on/off
state of each appliance to be disaggregated in a vector,
ult] = [ui[t] ualt] ... uplt]], which is constant between events
(i.e. where one or more loads change state). If noise were
removed (and assuming no unmetered events take place), the
power draw between events k£ and k + 1 would be constant,
which we can call the steady state power draw for segment k.
When an appliance turns on, we can examine the jump in the
steady state from one segment to the next and estimate what
change in the on/off vector Awu occurred. This change can be
estimated for a given time-step based on how each filter (and
every combination thereof) responds to a step impulse, also
called the zero-state response, &; of the i filter. This zero-
state response models the transient of a given appliance as it
approaches its steady state value.

Assuming a change did occur in the aggregate, we can
therefore assign that event to the appropriate load or loads
by considering
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where y[t : ti41] is the observed signal in the k" segment,
yss(k) is the steady state signal in the k*" segment, and
E(Au) = Zf\il &, ie. &(Au) is the summed zero-state
responses for each of the M filters that change in the argument,
Aw. This yss value, taken over all segments k, is exactly the
block-like representation of the aggregate signal mentioned
previously. In their work, however, Dong et al. provide no
mention of how to produce this representation, saying instead

that it can be estimated from the data and is assumed to be
known.

A recent attempt at producing this block-like represen-
tation was made by [5], the motivation for which was an
unsupervised/semi-supervised knapsack optimization method.
In their work, classification was achieved by characterizing all
load states via Gaussian distributions on their power demand
(or yss value) and the duration of these states. In other words,
the well-defined power draw and duration of a given event
observed in the aggregate can be assigned with a certain
probability to an appropriate load, based on the difference in
its demand and duration values. Once the loads were sepa-
rated, they proposed a labelling structure whereby regionally
accurate distributions on demand and duration are obtained
from data set surveys in the NILM field and/or data sheet
surveys from manufacturers of particular appliance types. A
kind of two-dimensional map, shown in [5], is helpful to
illustrate the labelling process for North American appliances.
When the loads are all well-separated in this two-dimensional
demand/duration representation, this technique is effective. It’s
inevitable, however, that as more loads and individual load
states are added to this 2D mapping, overlap will occur and
disaggregation performance will decline.

Nevertheless, they produced the block-like representation
of the aggregate by passing raw data through a pipeline of
filters consisting of five steps shown in table I. Although
quite promising results were achieved, the filters necessary
to produce the desired result were prohibitively demanding
in terms of time complexity, needing nearly 15 minutes to
pre-process and filter 5400 samples. Our proposed method
shows significant improvement in run-time, and demonstrable
consistency even in aggregate data, which proved difficult for
the filter pipeline [5].

III. METHODOLOGY

The premise of our proposed method is extremely simple:
find events in a window of the aggregate, and replace the
intermediate values with the mean value over each segment
in the window. This method necessarily excludes real-time
disaggregation as a possibility, but few use cases in NILM
require user updates at the sampling rate (1 Hz for modern
smart meters). Providing ‘down-sampled’ user updates at say
30 s or 1 min intervals is often more than sufficient. This
assumption is made in the current work, and allows events to
be found easily, rather than estimated at every sample.

For an event to justify disaggregation, the change in power
observed in the aggregate is generally large relative to the
noise. Small loads have negligible impact on the overall
energy consumption and are often ignored. For this reason,
examining the differential of the raw aggregate allows us to
find all events larger than some desired threshold. Since noise
increases with overall power draw, as well as for certain loads
or load states, a wavelet denoising approach allows a first-
pass reduction in noise with little cost to overall run-time.
Because wavelets are well-defined in time and frequency, we
can maintain sharp events while removing sub-threshold noise



components. In fact, run-time tests show that an initial wavelet
denoising actually improves overall run-time, since there are
far fewer events in the aggregate to consider, and also less
post-processing to be done on the output as a result. In the
present work, a Daubechies wavelet was used, with a single
vanishing moment, a universal threshold denoising method,
and a level independent noise estimate.

Once events are determined, the intermediate values are
smoothed using a moving median filter. Since it was already
determined that no appreciable events occur in these windows,
there is no risk of washing out short-lived events. By compar-
ison, the median filter is the first step in the filter pipeline
proposed by [5], and consequently such features are likely to
be missed.

In the ideal case, segments between proposed events are
comprised of single states, and replacing the intermediate
values with the mean is all that is necessary. It is very often
the case, however, that additional considerations need to be
made.

A. Edge cases

Figure 1 (left) shows a first example of an edge case, where
the rise to steady state of a given appliance is slow enough
relative to the sampling rate that the changes in demand are
all sub-threshold. As a solution to this, a histogram of the
intermediate samples is examined for well-defined peaks for
each window. If there is a clear separation between power draw
values in the window, a threshold is placed between them, and
each ‘sub-state’ is individually replaced with the mean value.

Figure 1 (center) shows an additional case, where even with
wavelet denoising, events are overestimated relative to ground
truth due to large amounts of noise. This is often the case for
appliances such as heat pumps, where yss and consequently
the noise is large, and the approach to steady state is slow.
A solution to these cases is to check that a linear fit over the
window involves a correlation above some threshold, and at the
same time, a slope above some threshold. This separates these
cases from the previous ones, where often the correlation will
be large, but the slope will not. If the segment meets these
criteria, we note the time-step of this segment, and ask the
same of the next window. We do this until the criteria are no
longer met, and finally fill-backward the yss value at the end
segment meeting these criteria. The result is a well-defined
yss value for this particular heat-pump state.

Sharp transients are also undesirable for this type of repre-
sentation, which vary widely in terms of width and height. An
example is shown in figure 1 (right). To deal with these cases,
we propose a post-processing step wherein the positive slope
events whose next negative slope event within some sample
threshold (say, 40 samples) has a large difference in value
(i.e. an uncompensated positive slope event), are removed and
the next yss value is filled backward. In other words, if the
resulting squared signal falls within 40 s of rising and the rise
is much larger than the fall, we consider this a transient and
chop it.

Finally, even in relatively flat segments, it is often the case
that events are over estimated due to random spikes in noise.
As a result, the mean values between what should be a single
segment can be different and below the threshold requested
by the user. An additional post-processing step is proposed
to deal with the following 8 cases: a positively or negatively
sloped, sub-threshold event is followed by either a positive or
negative sub-threshold event or a positive or negative event
larger than the threshold. The solution is to either fill forward
from the value prior to the sub-threshold event or fill backward
from the value subsequent to the next event. Each of the above
cases require a different method in order to recover the ideal
case mentioned in the previous section.

IV. EXPERIMENTS

A. Experimental Setup

Data was taken from House-1, Block-1 of the RAE
dataset [8], which provides nine days of data sampled at 1 Hz.
We chose to implement our method in Matlab, in part due to
its wavelet denoising package, but also in anticipation of future
work. All run-time tests under the heading ‘Steady-state block
filter’ ran on a Mac Pro (Late 2011 model) with a 2 GHz Intel
Core i7 processor and 4 GB of memory.

B. Experimental Results

In the interest of comparison with the filter pipeline pro-
posed by [5], we used the same 5400 s sample consisting of the
clothes dryer, the fridge, and the furnace. The raw aggregate
and block-like representation are shown in figure 2. Table I
shows the run-time comparison of the current method with
that of the filter pipeline in [5]. Over 1000 trials, the present
method performs at an average of over 6000 times faster
(noting of course the differences in hardware). This shows
the ability of our method to produce the desired result in an
online setting. For completeness, the same knapsack algorithm
developed by [5] was used on the block-like representation
produced by the present method, and the results are tabulated
in table II. As shown, the current method more accurately
captures the energy of all tracked appliances, and outperforms
on disaggregation accuracy scores across all appliances.

TABLE I
RUN-TIME COMPARISON
Steady-state block filter Filter pipeline [5]
Process/Step Time (sec) | Process/Step Time (sec)
Median Filter 1.6
Wavelet Denoising 0.0067 | Bilateral Filter 12.7
Block generation 0.1267 | Anisotropic Filter 0.1
Post-processing 0.0098 | Edge-Preserving Filter 875.4
Edge Sharpening 0.8
Total 0.1432 | Total 890.6

To demonstrate the generality of this method to more
complicated signals, figure 4 shows two examples of raw and
block-like representations of mains data, illustrating some of
the edge cases discussed previously.
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Fig. 1. Edge cases in order of presentation in text from left to right.
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Fig. 2. Sample used in present work (’Steady-state block filter’) and in [5] (Filter pipeline’).

TABLE I

COMPARISON OF ENERGY TRUTH/FILTERED/TRACKED (IN KWH)

Steady-state block filter
Appliance G.Truth | Filtered | Est/Tracked | Truth vs Est
Clothes Dryer 2.753 2.751 2.698 98.0%
Fridge 0.063 0.063 0.061 96.8%
Furnace 0.174 0.174 0.165 94.8%
Aggregate 2.990 2.988 2.924 97.8%
Filter pipeline [5]
Appliance G.Truth | Filtered | Est/Tracked | Truth vs Est
Clothes Dryer 2.753 2.729 2.604 94.5%
Fridge 0.063 0.065 0.055 87.3%
Furnace 0.174 0.167 0.144 82.8%
Aggregate 2.990 2.961 2.803 93.7%

V. CONCLUSIONS

We have demonstrated a significantly improved method for
producing a clean, block-like representation of non-trivial raw
data such that events larger than some specified threshold are
separated by well-defined power draw values. Many current
methods in NILM benefit from or require such a representa-
tion. Relative to a previously published method, our current
method provides more reliable filtering at a fraction of the
run-time, allowing its use in disaggregation methods requiring
online use (assuming down-sampled reporting). Inevitably,
more edge cases will become apparent as testing and iteration
continues, but this method has merits of simplicity in both
concept and implementation, and already provides consistent
filtering of the dominant appliances contributing to overall
energy consumption.



(1]
(2]

[3]

[4]

(5]

(6]

4000FT T T T T T =
Raw aggregate
Steady-state block filter
3500 -
3000 P N N L'“‘"L_n., .
©
=3
o© 2500~ -
2
o
a
2000~ -
1500 — -
L
I I . I i r I \ - I
500 1000 1500 2000 2500 3000
Time (s)
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Fig. 4. Comparison of raw mains aggregate data and steady-state block filter output
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